比特币的原理
专栏:科技资讯
发布日期:2018-11-07
阅读量:4487
交易、区块、挖矿和区块链 与传统银行和支付系统不同,比特币系统是以去中心化信任为基础的。由于比特币网络中不存在中央权威信任机构,“信任”成为了比特币用户之间存在的一种突出特性。在本章中,我们将从一个较高层面检视比特币,通过追踪一笔比特币系统中的单独交易,来看看它在比特币分布式共识机制中变得“被信任”和“被接受”的情形,以及最终成功地被存储到区块链(区块链是一个分布式的公共账簿,包含所有发生在比特币系统中的交易)。 书中每一个例子都是比特币网络中发生的真实交易,通过将资金从一钱包发送到另一钱包来模拟用户(Joe、Alice和Bob)间的交互。我们在追踪一笔通过比特币网络和区块链的交易时,将用到一些区块链数据库查询网站使每个步骤可以方便在网页上直接被呈现。提供区块链数据查询的网站就像是一个比特币的搜索引擎,你可以搜索比特币的地址、交易和区块,以及可以看他们之间的关系和资金流动。 以上每一个查询网站都有搜索功能,可以通过地址,交易哈希值或区块号,搜索到在比特币网络和区块链中对应的等价数据。我们将给每个例子提供一个链接,可以直接带你到相关条目,方便你做详细研究。 上图所示的概述图中,我们可以看到比特币系统由用户(用户通过密钥控制钱包)、交易(每一笔交易都会被广播到整个比特币网络)和矿工(通过竞争计算生成在每个节点达成共识的区块链,区块链是一个分布式的公共权威账簿,包含了比特币网络发生的所有的交易)组成。在本章中,我们将通过追踪在网络上传输的一笔交易,从整个比特币系统的的视角检视各个部分之间的交互。后续章节将详细阐述钱包、挖矿、商家系统背后的技术细节。 简单来说,交易告知全网:比特币的持有者已授权把比特币转帐给其他人。而新持有者能够再次授权,转移给该比特币所有权链中的其他人,产生另一笔交易来花掉这些比特币,后面的持有者在花费比特币也是用类似的方式。 比特币交易 交易就像复式记账法账簿中的行。简单来说,每一笔交易包含一个或多个“输入”,输入是针对一个比特币账号的负债。这笔交易的另一面,有一个或多个“输出”,被当成信用点数记入到比特币账户中。这些输入和输出的总额(负债和信用)不需要相等。相反,当输出累加略少于输入量时,两者的差额就代表了一笔隐含的“矿工费”,这也是将交易放进账簿的矿工所收集到的一笔小额支付。如图2-3描述的是一笔作为记账簿记录的比特币交易。 简单来说,交易告知全网:比特币的持有者已授权把比特币转帐给其他人。而新持有者能够再次授权,转移给该比特币所有权链中的其他人,产生另一笔交易来花掉这些比特币,后面的持有者在花费比特币也是用类似的方式。 交易就像复式记账法账簿中的行。简单来说,每一笔交易包含一个或多个“输入”,输入是针对一个比特币账号的负债。这笔交易的另一面,有一个或多个“输出”,被当成信用点数记入到比特币账户中。这些输入和输出的总额(负债和信用)不需要相等。相反,当输出累加略少于输入量时,两者的差额就代表了一笔隐含的“矿工费”,这也是将交易放进账簿的矿工所收集到的一笔小额支付。 常见的交易形式 最常见的交易形式是从一个地址到另一个地址的简单支付,这种交易也常常包含给支付者的“找零”。一般交易有一个输入和两个输出,如下图 另一种常见的交易形式是集合多个输入到一个输出(如下图)的模式。这相当于现实生活中将很多硬币和纸币零钱兑换为一个大额面钞。像这样的交易有时由钱包应用产生来清理许多在支付过程收到的小数额的找零。 最后,另一种在比特币账簿中常见的交易形式是将一个输入分配给多个输出,即多个接收者(如下图)的交易。这类交易有时被商业实体用作分配资金,例如给多个雇员发工资的情形。 比特币挖矿 这个交易现在在比特币网络上传播开来。但只有被一个称为挖矿的过程验证且加到一个区块中之后,这个交易才会成为这个共享账簿(区块链)的一部分。关于挖矿的详细描述请见第8章。 比特币系统的信任是建立在计算的基础上的。交易被包在一起放进区块中时需要极大的计算量来证明,但只需少量计算就能验证它们已被证明。挖矿在比特币系统中起着两个作用: ▷ 挖矿在构建区块时会创造新的比特币,和一个中央银行印发新的纸币很类似。每个区块创造的比特币数量是固定的,随时间会渐渐减少。 ▷ 挖矿创建信任。挖矿确保只有在包含交易的区块上贡献了足够的计算量后,这些交易才被确认。区块越多,花费的计算量越大,意味着更多的信任。 描述挖矿的一个好方法是将之类比为一个巨大的多人数独谜题游戏。一旦有人发现正解之后,这个数独游戏会自动调整困难度以使游戏每次需要大约10分钟解决。想象一个有几千行几千列的巨大数独游戏。如果给你一个已经完成的数独,你可以很快地验证它。然而,如果这个数独只有几个方格里有数字其余方格都为空的话,就会花费非常长的时间来解决。这个数独游戏的困难度可以通过改变其大小(更多或更少行列)来调整,但即使它非常大时验证它也是相当容易的。而比特币中的 "谜题" 是基于哈希加密算法的,其展现了相似的特性:非对称地,它解起来困难而验证很容易,并且它的困难度可以调整。 在 “1.3 比特币的应用、用户和他们的故事”一节中,我们提到了一个叫Jing的在上海学计算机工程的学生。Jing在比特币网络中扮演了一个矿工的角色。大概每10分钟,Jing和其他上千个矿工一起展开一场对一个区块的交易寻找正解的全球竞赛。为寻找这个解,也被称为工作量证明,整个网络需要具有每秒亿万次哈希计算的能力。这个工作量证明算法指的用SHA256加密算法不断地对区块头和一个随机数字进行哈希计算,直到出现一个和预设值相匹配的解。第一个找到这个解的矿工会赢得这局竞赛并会将此区块发布到区块链中。 Jing从2010年开始挖矿,当时他使用一个非常快的桌面电脑来为新区块寻找正解。随着更多的矿工加入比特币网络中,寻找谜题正解的困难度迅速增大。不久,Jing和其他矿工升级成更专业的硬件,比如游戏桌面电脑或控制台专用的高端独享图像处理单元芯片(即显卡GPU)。在写这本书的时候,解题已经变得极其困难,只有使用集成了几百个挖矿专用算法硬件并能同时在一个单独芯片上并行工作的专用集成电路(ASIC)挖矿才会营利。Jing同时加入了一个类似彩票奖池的、能够让多个矿工共享计算力和报酬的矿池。Jing现在运行两个通过USB联接的ASIC机器每天24小时不间断地挖矿。他卖掉一些挖矿所得到的比特币来支付电费,并可以通过营利获得一些收入。作为专用挖矿软件的后台,他的计算机里安装了一个比特币索引客户端,名称为bitcoind。 说点什么
发表
最新评论
|
点击开启品牌新篇章